
AutoML Applications in Business: A Case Study Using BrewAI

AutoML
Applications in
Business:

A Case Study
Using BrewAI

Authored By:
Fethi Rabhi1

School of Computer Science and Engineering,
University of New South Wales, Australia
Alan Ng2

Individual Researcher and Consultant, Hong Kong
Nikolay Mehandjiev3

Alliance Manchester Business School, The University of Manchester,
UK

AutoML Applications in Business: A Case Study Using BrewAI

8 October 2021

AutoML Applications in Business: A Case Study Using BrewAI

Contents
Abstract
1. Introduction
2. Literature Review

Basic concepts
Data preparation
Feature Engineering
Model generation

AutoML tools
Performance of AutoML tools
Business applications of AutoML

3. BrewAI Case Study
BrewAI User Interface
Technical overview
Experiences Using BrewAI on Sample Datasets

Description of datasets used and experimental system
Accessibility and Usability of BrewAI
Model Explainability of BrewAI
Model performance of BrewAI on Kaggle
Model transparency and understandability of BrewAI

Overall Evaluation
4. Conclusions and Future Work

Summary
Future Research areas

5. Acknowledgements
6. References

School of Computer
Science and
Engineering

FACULTY OF ENGINEERING

Professor Fethi A. Rabhi
f.rabhi@unsw.edu.au

Alliance Manchester Business
School

Professor Nikolay Mehandjiev
n.mehandjiev@manchester.ac.uk

2

AutoML Applications in Business: A Case Study Using BrewAI 3

Abstract

The demand for simple solutions that deliver meaningful results without the need to
be operated by machine learning (ML)-experts has given rise to the field of automated
machine learning (AutoML). It enables domain scientists to apply ML without the need
to understand and learn the technologies that support these techniques in detail. This
paper investigates the state-of-the-art in the area of AutoML particularly in the
context of business applications. One of the problems identified is that most existing
AutoML solutions are tied to a particular platform or need specialised staff to operate
them. We then proceed to explore a new AutoML tool called BrewAI, which addresses
these issues by offering platform-independent facilities which do not rely on
specialised staff. BrewAI is designed to be a simple and cost-effective solution using
service-oriented design principles and autonomous software services. We then
explore the usability and model explainability offered by BrewAI by applying it to
analyse a reference dataset. We conclude that BrewAI offers usable interface for the
application of machine learning models which does not require any data
pre-processing and modelling skills. BrewAI also offers model explainability facilities
by showing necessary details about the data and the model which are
understandable by business users. The paper concludes by generalising our findings
to the class of AutoML tools, presenting the challenges facing them and outlining
areas of future work.

AutoML Applications in Business: A Case Study Using BrewAI 4

1. Introduction

For many years, the area of machine
learning (ML) has been the preserve of
ML scientists creating a wide variety of
models and algorithms and applying
them to new and emerging datasets. In
particular, the popularity of deep
learning methods has enabled key
advances in many application domains,
such as computer imaging, speech
recognition, and search optimisation. As
massive amounts of data are being
made available by big technology
companies as well as public agencies,
many businesses are heavily investing in
the development of practical
applications of ML techniques for
improving their business operations or
creating new revenue streams, possibly
leveraging their own private enterprise
data.

However, the use of ML techniques is still
fraught with several technical difficulties.
The process of taking an ML model from
conceptualisation to deployment to solve
a business problem is a complex,
time-consuming iterative process
comprising a series of steps that involves
data collection and integration, data
pre-processing, feature selection and
transformation, model training, model
evaluation, tuning, and deployment. This
pipeline process needs to be supported
by appropriate computational resources
during the model training and inference
phases.

Despite the availability of a huge panoply
of technologies, many challenges remain
such as working out which ML
techniques to apply to which problem,
how to ensure data quality and how to
fine-tune ML parameters properly.
Further, ML is a continuous cycle that
requires ongoing model monitoring and
drifts detection even after the model has
been deployed to production to ensure
that the model’s performance does not
decline over time. Addressing these
challenges is critical for the successful
implementation of end-to-end ML
pipelines at scale.

The demand for simple solutions that
deliver meaningful results without the
need to be operated by ML-experts has
given rise to the field of automated
machine learning (AutoML). The goal of
AutoML is to make ML more systematic
and efficient by automating the various
phases of the ML pipeline thereby
minimising human involvement in the
orchestration of the ML pipeline. It
enables domain scientists to apply ML
without the need to understand and
learn the technologies that support
these techniques in detail. The purpose
of this paper is to investigate the
state-of-the-art in the area of AutoML
particularly in the context of business
applications. It presents our experiences
in developing a practical application
using the BrewAI AutoML system as a
case study. It draws general conclusions
about recent developments in this space
and outlines areas of future work.

AutoML Applications in Business: A Case Study Using BrewAI 5

2. Literature Review

Basic concepts

According to [1], AutoML refers to the automation of several activities related to ML
such as automating data collection and experiment design; automating data clean up
and missing data imputation; automating feature selection and transformation;
automating model discovery, criticism, and explanation; automating the allocation of
computational resources; automating hyperparameter optimisation (HPO),
automating inference and automating model monitoring and anomaly detection.

As described in [2] and illustrated in Fig. 1, this AutoML pipeline can be broadly broken
into four phases: data preparation, feature engineering, model generation, and model
evaluation.

Data preparation

The first phase of an ML pipeline is data preparation which typically comprises data
collection, data augmentation and data cleaning. Data collection involves preparing
the data set for building a model and here data can be ingested from multiple
sources. A commonly occurring problem in data collection is handling imbalanced
datasets, for example in detection of fraudulent credit-card transactions, a dataset of
credit card transactions may only have a small percentage of fraudulent observations.
Techniques such as under-sampling the majority class or over-sampling the minority
class are often applied to address this problem. Data augmentation techniques such
as SMOTE [3, 4] are often preferred over the former techniques to avoid over-fitting of
a model which involves creation of synthetic data based on the original data. Ingested
data can be in multiple languages, have special characters, represented in different
scales, may contain outliers or there could be missing values in data. A good data set
is critical to the accuracy of a model, so the process of data cleaning is used to cleanse
data. Another important task performed in the data preparation phase help users
better understand the data characteristics, identify hidden relationships and employs
visual and programmatic methods to collect descriptive statistics, numerical
summaries, create plots of distribution (e.g. histograms, boxplots) and conduct
bivariate and multivariate analysis (through creating heatmaps, scatter plots etc.).

Fig.1. An overview of AutoML pipeline (adapted from He et al. [2])

AutoML Applications in Business: A Case Study Using BrewAI 6

Feature Engineering

Feature engineering is the process of extracting useful and relevant features from raw
data. One important use-case for feature engineering is to resolve the curse of
dimensionality where too many features lead to a sparse dataset. Feature engineering
can comprise three kinds of tasks – feature extraction, feature selection and feature
construction. Feature extraction reduces the dimensionality of dataset by reducing
redundant features using prominent algorithms such as principal component analysis
(PCA), t-distributed stochastic embedding, feature selection uses a ranking score to
rank and select the most important features while feature creation expands on
original feature space to create more meaningful features. In automatic feature
engineering, hierarchical feature extractors are learned in an end-to-end fashion from
data rather than manually designed. Recent works on automatic feature generation
such as the one reported in [5] focus on designing different search strategies that
prune as many of the candidates to be evaluated as possible, while aiming to keep the
most useful interactive features.

Model generation

Fig. 1 shows that model generation is divided into search space which defines the
design principles of ML models and optimisation methods. Search space consists of
traditional ML models (e.g., SVM and KNN), and neural architectures. In this paper, we
will primarily focus on neural architectures. optimisation methods are classified into
hyperparameter optimisation (HPO) and architecture optimisation (AO), where the
former indicates the training-related parameters (e.g., the learning rate and batch
size), and the latter indicates the model-related parameters (e.g., the number of layers
for neural architectures). Some researchers refer to AutoML as neural architecture
search (NAS) but it is more general so NAS can be considered to be a sub-field of
AutoML.

At the heart of an AutoML system is the process of generating a model which consists
of several steps, one of which is Hyperparameter optimisation (HPO). In statistics, a
hyperparameter captures the prior belief before data is observed so these parameters
need to be initialised before training an ML model. In particular, deep neural networks
depend on a wide range of hyperparameter choices about the neural network’s
architecture, regularisation, and optimisation. HPO improves over the default settings
provided by common ML libraries and allows general-purpose pipelines to be adapted
to datasets from specific application domains. Common HPO techniques include Grid
Search, Random Search [6], and Bayesian Optimisation [7] and many existing AutoML
tools use variations of these techniques. For example, BOHB used in Auto-Pytorch [8]
combines Bayesian optimisation (BO) with Hyperband (HB) [9] and has been shown to
outperform BO and HB on many tasks. It also achieves speed ups of up to 55x over
Random Search.

Feature Engineering and HPO led to the need for increasingly more complex neural
architectures so the process of designing such architectures had to be automated as
well leading to Architecture Optimisation (AO) methods. These methods may also be
referred to as search strategy [10] or search policy [11]. The commonly used AO
methods contain reinforcement learning (RL) [12–16], evolution-based algorithm
(EA)[17–23] ,and gradient descent (GD) [24–26], surrogate model-based optimisation
(SMBO) [6, 27–32], and hybrid AO methods [33–37].

AutoML Applications in Business: A Case Study Using BrewAI 7

AutoML tools

There is a huge diversity in the tools available to support AutoML, however, efforts in
this field are somewhat fragmented. Current automation tools and techniques target
individual phases of the ML pipeline.

For example, the data preparation phase is well supported by a multitude of R
packages and Python libraries aimed at automating different tasks in this step. For
example, automated EDA tools such as autoEDA, DataExplorer here aim to make data
exploration phase fast and easy as possible [38]. A complete survey of the various R
packages to support EDA can be found in [38]. Similarly, techniques such as
BoostClean, AlphaClean [39, 40] have been applied to automate the process of data
cleaning. Automated data augmentation techniques for textual, audio and image
data have received much attention in recent years [38]. Automation efforts in the
space of feature engineering target a type of feature engineering task e.g.
decision-tree based automated feature construction methods

Auto-WEKA [41] is one of the first AutoML systems based on the well-known WEKA
machine learning toolkit. TPOT [42] automatically constructs and optimises
tree-based machine learning pipelines from a small set of fixed ML components that
are connected in predefined ways. Auto-sklearn [43] is similar but adds several
improvements such as meta-learning for warm starting the optimisation and
automatic ensembling. Inspired by Auto-sklearn, Auto-PyTorch [8] uses an ensembling
method to implement an automated post-hoc ensemble model selection [44] for
efficient optimisation. Microsoft offers NNI [45] as an open-source package to be used
within a Python environment. Besides Python, several AutoML tools based on R such
as mlrMBO [46], parsnip [47] are surveyed in [38].

As mentioned earlier, several companies are now developing their own AutoML
systems that aim to assist organisations to deploy ML pipelines with minimal effort
and costs. Big tech companies are offering AutoML products such as Azure Machine
Learning [48] and Amazon SageMaker Autopilot [49] and Google’s AutoML [50].
Automated Artificial Intelligence (AutoAI) [51] is an IBM product (part of Watson) which
extends the automation of model building towards automation of the full ML life cycle.
It puts more focus on preparing data for training, choosing the features, and the best
performing pipelines can be put into production to process new data, and deliver
predictions based on the model training. AutoAI-TS [52] is a framework for time-series
operating as a new service in AutoAI.

One of the problems with these solutions is that they are part of a much bigger
system, often tied to a particular platform or cloud infrastructure or need to be
installed on a user's desktop. Some solutions are more focused on AutoML and offered
in a platform-independent manner. They include H2O Driverless AI [53, 54] which
supports fully- or semi-automated feature engineering and selection, model tuning
and training of predictive models and DataRobot (which has recently acquired
Algorithmia). Still, these solutions may be tied to specific infrastructures that bring
high costs to Small and Medium Enterprises (SMEs) and government organisations
and may not be easy to deploy and operate by non-expert staff.

AutoML Applications in Business: A Case Study Using BrewAI 8

Performance of AutoML tools

There are many techniques that can be used to boost AutoML tools. In practical
applications, it is often necessary to trade off two or more objectives, such as the
performance of a model and IT resource management. This is discussed in detail in
[55].

One of the key ideas used to improve the performance of AutoML tools is
meta-learning. As different configurations are being explored (HPO, pipeline
components and/or network architecture components), meta-learning is the process
was based on model evaluation, better configurations are selected through a process
of learning. In other words, meta-learning helps build AutoML systems that
continuously improve over time [56]. Proposed meta-learning methods include MAML
[57], Reptile [58], SNAIL [59], and Relational Meta-Learning[60] . Meta-learning is used
in many AutoML tools such as Oracle AutoML [61].

There are many other areas that offer potential to improve performance in AutoML
tools, some of them involve user input. For example, VolcanoML [62] introduces and
implements basic building blocks that decompose a large search space into smaller
ones and allows users to utilise these building blocks to compose an execution plan
for the AutoML problem at hand.

Other performance-enhancing techniques work behind the scenes. A number of
offline data pre-processing technologies exist such as Avro [63], Parquet [64], or
TFRecord [65] which facilitate extracting features from raw data, validating data [66],
and converting data to binary formats to enable higher throughput data ingestion.
Some batch computing frameworks such as Apache Spark [67], Beam [68], and Flume
[69] are also commonly used for offline pre-processing. There have been attempts to
build simple data loading systems that could be shared between multiple machine
learning jobs. For example, the tf.data API provides generic operators that can be
parameterised by user-defined functions, composed, and reused across multiple ML
domains [70].

The use of parallel computing techniques is also important in improving the
performance of AutoML tools without user intervention. For example, the data
pre-processing stage could leverage parallelism and pipelining to overlap
pre-processing with model training computations. Determining the optimal degree of
parallelism and amount of data to prefetch is often challenging as it depends on the
nature of the workload and the hardware resources available.

There is also a growing interest in well-designed AutoML benchmarks to take
reproducibility and comparability of AutoML approaches into account [71]. For
example, HPOlib [72] provides benchmarks for hyperparameter optimisation, ASlib
[73] for meta-learning of algorithm selection and NASBench-101 [74], NASBench-1 Shot
1 [75], and NASBench-201 [76] for neural architecture search. LCBench1 [8], a new
benchmark for studying multi-fidelity optimisation w.r.t. learning curves on a joint
optimisation space of architectural and training hyperparameters across 35 datasets.

AutoML Applications in Business: A Case Study Using BrewAI 9

Business applications of AutoML

There is no doubt that AutoML tools are becoming increasingly popular and arousing
more interest in the business community1. There are many published examples of
using AutoML in business applications e.g. forecasting bank failures by policymakers
and central banks [77]. A more recent paper discusses other examples of applications
of AutoML in industry and discusses future research trends [78].

Whilst the goal of scientific research is to create AutoML tools that aim for full
automation, commercial interests in AutoML aim to offer some form of
“semi-automation” in assisting organisations deploy ML pipelines at lower costs. For
this reason, most business applications tend to deal with supervised learning
problems (classification and regression), feature vector representations and
homogeneous datasets (same distribution in the training, validation, and test set) [79].

Some of the other challenges reported when using AutoML in the business sector are:

● How to relate ML to business objectives: non-technical users requirements
(e.g., business KPIs and policy compliance) are often not aligned with what
technical users want (e.g., model accuracy and training time) [80]

● Usability: non-technical users need to be able to use the system without ML
expertise

● Need for transparency: non-technical users do not necessarily understand the
black-box nature of ML [81].

● Incomplete pipelines: many AutoML pipeline libraries have been proposed, but
most of them only focus on some parts of the AutoML pipeline ([2], Fig. 1). e.g
TPOT [42], Auto-WEAK [41], and Auto-Sklearn [43] are built on top of scikit-learn
[82]

● Data quality: most progress has been done on model building but the
bottleneck is now on the data side as data quality is key to producing good
models for industry.

● Testing of models is also another problem, new techniques from software
engineering are needed

● Performance: to achieve good performance, businesses need more
sophisticated solutions which need to be weighed against cost considerations
(hardware and resources available).

Most studies point out that the most difficult and hard to automate part is
understanding the problem domain and exploration of existing data sets. Usually,
much more time is spent on data preparation and exploration than on model tuning.
In this paper, we investigate new opportunities for addressing these issues via a new
AutoML tool namely BrewAI.

1

https://www.arnnet.com.au/article/691087/how-low-code-platforms-enable-machine-learning/

AutoML Applications in Business: A Case Study Using BrewAI

BrewAI User Interface

An important component is the BrewAI
User Interface which displays results at
different stages of the ML pipeline in a
way that is easily comprehended by the
user. The user can also direct the
different stages like training via simple
button clicks. There are five stages to
compute the prediction results from the
AutoML model, illustrated in Fig. 2. There
is no restriction in the order to follow
when performing these five stages, users
can jump into any stage to check the
previous actions in that specific stage.

10

3. BrewAI Case Study

The review of existing systems has demonstrated some limitations in terms of
platform and expected skills. New generation of tools are now appearing which
address these limitations. Here we focus on one of these tools called BrewAI [83] and
explore its features and the ways in which it alleviates the issues with the existing
tools. BrewAI is designed to be a simple and cost-effective solution that delivers ML
functionalities for organisations that don’t have a specialised staff or alternatively used
by specialised staff with the intention of reducing time to market with AI models. Like
other AutoML systems, BrewAI simplifies the creation and deployment of ML models.
Starting from just a simple spreadsheet, a user can train, build and deploy a
commercial-grade ML model within an IT infrastructure with minimal efforts. This
section first presents a walkthrough of its user interface. It is followed by a technical
overview of its architecture and its application in a dataset example.

Stage 1 - Train. In this stage, users can
upload the tabular data file to the BrewAI
webpage through the interface. Fig. 3
and Fig. 4 show BrewAI’s interfaces for
training dataset upload and model
training submission. After clicking the
“Load Data” button (see Fig. 3), a dataset
preview will be shown (see Fig. 4), users
will then select the target column for
prediction. There is a checkbox for users
to enable the hyperparameter tuning
feature in BrewAI if they want a more
accurate AutoML model, otherwise,
disabling hyperparameter tuning will get
a less accurate but more time-efficient
model. The model will be built after
clicking the “Submit Model” button (see
Fig. 4). BrewAI will automatically define
the type of machine learning tasks
(regression or classification), handle the
data pre-processing, and build the
AutoML model.

Stage 1: Train

Stage 2: Train Progress

Stage 3: Explainable AI

Stage 4: Predict

Stage 5: Predicted Result

Fig. 2. BrewAI’s five stages for AutoML

Fig. 3. BrewAI’s Interface for training dataset upload.

AutoML Applications in Business: A Case Study Using BrewAI

Stage 2 – Train Progress. This stage is to
provide an interface for users to see the
status of data processing and model
building. Users could see a parallel
model-building workflow If they
submitted multiple models in stage 1(see
Fig. 5). No action is required from the
users in this stage.

11

importance, and hyperparameter
optimisation. Fig. 6 and Fig. 7 show
BrewAI’s interfaces for data and model
explanation.

Fig. 4. BrewAI’s Interface for loaded dataset review and
model training submission

Fig. 5. BrewAI’s Interface for the status of data
processing and model building

Stage 3 – Explainable AI. This stage is to
show explainable details of the data and
model after model training is completed.
The explainable data shows the details of
data quality and data type for each input
feature. The explainable model shows
the details of the class distribution,
model performance, confusion matrix,
performance by class, feature

Fig. 6. BrewAI’s Interface (part 1) for data, model, and
hyperparameter explanation.

AutoML Applications in Business: A Case Study Using BrewAI 12

Fig. 7. BrewAI’s Interface (part 2) for data, model, and
hyperparameter explanation.

Stage 4 – Predict. In this stage, users can
select a specific model trained in stage 2
to predict the test dataset. Users are
allowed to select any previously trained
model to do the prediction.

Stage 5 – Predicted Results. After
finishing the prediction in stage 4, users
can explore the prediction results in this
stage (see Fig. 8). BrewAI also allows
users to preview and download
previously predicted results to csv files by
clicking buttons (see Fig. 9).

Fig. 8. Interface for result exploration.

Fig. 9. Right: Interface for result preview and download.

AutoML Applications in Business: A Case Study Using BrewAI 13

Technical overview

BrewAI’s software architecture is based on service-oriented design principles in which
autonomous software services can operate and communicate independently from
each other. This architecture is illustrated in Fig 10.

The BrewAI engine which is at the heart of the system is responsible for tackling
supervised learning problems using deep learning methods. It can deal with different
data types including numerical, text, categorical, and binary. New data types such as
images are planned to be released in the current roadmap [84]. The engine is built
over several other systems. Its code base relies on the PyTorch [85] library.
Hyperparameter optimisation is automatically conducted using Optuna [86] and
HyperOpt [87].

To determine which features are important [88], BrewAI uses different attribution
techniques including Integrated Gradients for feature attribution and Conductance for
layer and neuron attribution in order to better understand the neural network
predicting survival. These basic building blocks for attribution can be utilised to
improve model interpretability, breaking the traditional "black-box" characterisation of
neural networks and delving deeper into understanding how and why they make their
decisions.

As shown in the architecture diagram, BrewAI has the ability to aggregate data from
different sources using a Workflow/API layer, each data source can be independently
accessed to encode and feed data into the model. This is supported by an Apache
Airflow Engine [89] which allows the definition, scheduling, and monitoring of a wide
range of data processing pipelines. Airflow also provides many plug-and-play
operators that are ready to execute tasks on Google Cloud Platform, Amazon Web
Services, Microsoft Azure, and many other third-party services.

BrewAI gives DevOps engineers and data scientists the ability to observe and control
multiple machine learning tasks at the same time for maximum efficiency. This is
achieved via the editable data pipeline features provided by Apache Airflow. By
accessing Airflow’s WebUI or Python APIs, the DevOps and the performance
management team can edit and review BrewAI’s AutoML pipelines e.g. creating
pipelines involving multiple heterogeneous data sources and combine them into one
dataset, and then submit them for training and making predictions.

AutoML Applications in Business: A Case Study Using BrewAI 14

Data scientists can also have access to BrewAI’s pipelines to further enhance the data
processing, such as adding data validation and cleansing activities to pipelines. Fig. 11
shows the WebUI of Apache Airflow for editing BrewAI’s AutoML pipeline.

All BrewAI software components are virtualised in containers using Kubernetes [90].
This allows them to be deployed on a scalable cloud platform (e.g. Amazon’s EC2). The
use of an elastic cloud means the system can adapt to different data sizes and loads.

Fig. 11. Airflow’s WebUI for editing BrewAI’s AutoML pipeline.

Experiences Using BrewAI on Sample Datasets

Description of datasets used and experimental system

In this case study, we first perform an analysis task using a publicly available dataset to
evaluate the following four aspects:

1. The model-building experience and the user interface’s usability by
non-technical experts

2. The model’s explainability
3. The model’s performance
4. The model’s transparency and understandability

The analysis task is a binary classification with the Titanic dataset [91] which is a
tabular dataset consisting of 11 columns of features and 981 samples in the training
dataset, and 1309 samples in the testing dataset. The feature contains integers, string,
float, and mixtures of string, symbols, and numbers. The machine learning task is to
predict if a passenger survived based on the given information of the person.

AutoML Applications in Business: A Case Study Using BrewAI 15

Accessibility and Usability of BrewAI

Accessing BrewAI requires an internet connection and a browser to log in to their
server. All the interfaces would render on the web page and the computation would
run on the backend server, installation on the local computer is not required. We went
through five stages in the BrewAI process mentioned in Fig. 2. Throughout the whole
implementation process, we mainly use three controls from the interfaces to
implement the AutoML task: 1. dropdown selection for selecting prediction target and
models, 2. Confirm buttons for confirming actions and 3. Textbox for naming models.
The model building and data pre-processing are fully automatic, except for the actions
that were required for uploading dataset and selecting prediction target.

Model Explainability of BrewAI

After the data pre-processing and model building finish, a user can access an
explainable AI page (see Fig. 6 & Fig. 7 – stage 3) to see the explainable features. Table 1
shows a summary of what explainable features are available in BrewAI divided
according to data and model feature groups and types.

Explainable
feature
group

Explainable feature
type Explainable feature How BrewAI explains it in the case study

Data
Information

Basic Information Number of Rows Show the value of the count

Basic Information Number of cells with
inf/-inf values

Show the value of the count

Basic Information Number of columns Show the value of the count

Basic Information Number of cells with Null
values

Show the value of the count

Data Quality Empty Columns Show the value of count and what action was
taken

Data Quality Rows with empty target
variable values

Show the value of count and what action was
taken

Data Quality Duplicate Rows Show the value of count and what action was
taken

Feature(column) Feature (column) Name Show each feature name

Feature(column) Feature (column) Data
Type

Show how BrewAI classifies the feature type:
Categorical, Numeric, text, etc.

Feature(column) Feature (column) Data
Sub Type

Show how BrewAI classifies the feature subtype:
binary, short/long text, integer, float, etc.

 Feature(column) Feature (column) Empty
Values

Show count and percentage of empty value for
each feature

Model
Information

Basic Info Problem Type Show the type, e.g., classification or regression

Basic Info Model Type Show the type, e.g., deep neural network

Basic Info Train/Test Split Show sizes of training, validation, and testing data

Class Distribution Class Distribution Show class name, sample count, and percentage

Model Performance Metric type Show the type of performance, e.g., accuracy, R2

Model Performance Metric value Show performance values, e.g., accuracy, f1, R2
scores

Model Performance Performance detail Show confusion matrix in a chart

Model Performance Performance by Class Show each target class and the relevant
performance values

Feature Importance Feature Importance Show all ranked features’ importance in a bar
chart

Hyperparameter
Tuning

Hyperparameter Search
Space

Show hyperparameter items and the search
range, e.g., learning rate, hidden layer number,
dropout rate, etc.

Hyperparameter
Tuning

Hyperparameter Search
Trials

Show how many trials (including pruned and
completed trials) have been done for
hyperparameter search

 Hyperparameter
Tuning

Best Hyperparameters
Selected

Show what hyperparameters have been selected

Table 1. BrewAI’s explainable features for data and model

AutoML Applications in Business: A Case Study Using BrewAI 16

Model performance of BrewAI on Kaggle

BrewAI automatically splits the training, validation, and test datasets (derived from the
uploaded training dataset) and provides a performance based on the test dataset.
Once a model training had completed, we can see the accuracy and confusion matrix
on BrewAI’s webpage (see Fig. 6 & Fig. 7). In this case study, the accuracy score is 80%
based on BrewAI’s evaluation.

We uploaded the test dataset (the original test dataset, not the one derived from the
training dataset) to BrewAI and downloaded the predicted value as a csv file (see Fig. 9
- stage 5). The predicted result was then submitted to Kaggle leaderboard of “Titanic -
Machine Learning from Disaster” competition [91] for performance evaluation. The
accuracy score on the Kaggle leaderboard for the test dataset was 0.76315 which is
similar to the evaluation from BrewAI. Based on the Kaggle leaderboard data of this
competition (extracted on 7th Oct 2021), the median value of the accuracy score
among Kaggle competitors is 0.77511, around 88% of Kaggle competitor’s accuracy
scores fell between 0.75 to 0.8. Therefore, BrewAI’s AutoML prediction ability is at the
average level among 20779 Kaggle competitors in this case study. Participating in
Kaggle competition usually requires extensive data science knowledge for data
processing and model-building, the result of this case study shows that BrewAI is able
to provide similar predictive power as an average Kaggle participant in an automated
manner with less effort.

Model transparency and understandability of BrewAI

Drozdal et al.’s study [92] identify what information needs on the AutoML interfaces for
data scientists to establish trust in AutoML systems. We evaluated the BrewAI’s model
transparency and understandability based on a table in Drozdal et al’s study. The
model transparency items of AutoML in the table were identified and ranked by 21
participants with prior experience with machine learning. We evaluate each item to
understand the model transparency of BrewAI. Table 2 shows how many
model-transparency items BrewAI can provide from Drozdal et al.’s study.

Importance
Rank Type Aspect Description

Available In
BrewAI

4 Data Raw data View the meanings of each column in the
raw data

Yes

5 Data Raw data Visualise each column’s distribution in the
raw data

Planned

6 Data Raw data Visualise the raw data - view overall
distributions

Planned

8 Data Raw data View the raw data - statistics of individual
distributions

Planned

9 Data Raw data Visualise outliers in the raw data Planned

10 Data Raw data View statistics of missing values in the raw
data

Yes

11 Data Pre-processed data View statistics of the pre-processed data Planned

13 Data Pre-processed data Visualise data after pre-processing Planned

15 Data Raw data View statistics of outliers in raw data Planned

16 Data Feature engineering View how existing features were engineered
into new features

Planned

19 Data Raw data View the raw data table Yes

Table 2: BrewAI’s model transparency item checklist (from Drozdal et al.’s study)

AutoML Applications in Business: A Case Study Using BrewAI 17

19 Data Raw data View the raw data table Yes

21 Data Pre-processed data View the pre-processed data table Planned

24 Data Raw data See how data was split (test vs.
train/holdout)

Yes

1 Model Model evaluation View evaluation metrics Yes

2 Model Model evaluation View visualisations of model performance Yes

12 Model Feature engineering Effect of engineered features Yes

14 Model Pipeline Show adopted models in output pipelines Yes

17 Model Pipeline Ability to edit a pipeline Yes

18 Model Model evaluation Compare differences between pipelines Yes

22 Model Model evaluation Compare one model against other models Yes

23 Model Feature engineering View new engineered features Planned

26 Model Hyperparameters See model’s hyperparameters Yes

3 Process Pre-processed data Know how raw data was pre-processed Planned

7 Process Pipeline View process of how a pipeline is created Yes

20 Process Pipeline Show which types of models considered for
model selection

Planned

25 Process Feature engineering Know how features were engineered Planned

27 Process Hyperparameters Know how hyperparameter optimisation
was performed

Yes

We found out that there are 14 out of 27 items of model transparency feature that
BrewAI is available to show. The outstanding features are planned in BrewAI’s
roadmap [84]. In practice, most business users do not understand the technical
aspects related to data handling and model-building in the ML pipeline. This is why
BrewAI focuses on a simple and clear interface that provides cosine information about
the input data and model performance, which business users concern are most
interested in.

Overall Evaluation

For the usability aspect, BrewAI does not require any data pre-processing and
modeling skills to apply machine learning models. The interface consists of only
simple controls which are easy enough for business users to use. The model building
processing is fully automatic without worrying about parameter and pipeline settings.
The only requirement for using BrewAI is that users need to understand the target
they want the AutoML model to learn. Although BrewAI only works with
tabular/structural data, users can still transform any other type of data into a tabular
form for classification and regression tasks.

For the model explainability and understandability aspect, BrewAI can show necessary
details about the data and model in a way that business users can understand. Users
can have a summary of their datasets without any programming skills or manual data
analysis. There is limited explainability and control about the data pipeline and model
generation process, but the assumption is that most business users only focus on the
data and results such as data quality, performance, and feature importance that
BrewAI can provide.

For the model performance aspect, the case study shows that non-expert users with
the BrewAI model still achieve an average result in a Kaggle competition without data
pre-processing and model building techniques.

AutoML Applications in Business: A Case Study Using BrewAI 18

4. Conclusions and Future Work

Summary

This paper has reviewed the landscape of automating the application of machine
learning methods and in particular existing work that is concerned with the
development of a new type of tool called AutoML tools. As there is a huge variety in
the number of proposed solutions, this paper has focused on those specifically
targeted at business applications and which do not have a high entry barrier. A case
study is performed using an existing solution (BrewAI) to determine its AutoML
capabilities and positioning within the current offerings. Using some practical
datasets, the evaluation shows that the tool has the ability to analyse data sets in an
intuitive manner while it offers a flexible and scalable architecture without a loss in
performance. Table 3 summarises the comparison with other tools.

Tool Name License/Dep
Costs

Models Used Expertise
needed

Deployme
nt

Completeness
of pipeline

Integration

DataRobot Annual License
and Per Model
Deployment

Wide range ML Scientist Premises/
Cloud

Complete APIs

H2O Annual License
and Per Model
Deployment

Wide range ML Science Premises
/Cloud

Complete APIs

Google
AutoML

Per timed
usage

Regression and
Classification

ML Scientist
and DevOps

Google
Cloud

Partial GCP services

AWS Sage Per timed
usage

Regression and
Classification

ML Scientist
and DevOps

AWS Partial AWS services

Azure Per timed
usage

Regression and
Classification

ML Scientist
and DevOps

Azure Partial Azure services

BrewAI Annual License
and Per Model
Deployment

Deep Learning Business
Analyst, ML
Scientist and
DevOps

Premises/
Cloud

Complete Workflow engine
(Plugins for various
systems: SQL,
Apache Spark,
cloud storage, etc.)

Table 3: Comparing BrewAI with other AutoML tools

AutoML Applications in Business: A Case Study Using BrewAI 19

Future Research areas

There is no doubt that AutoML research work is likely to intensify especially when
there are still many unresolved issues amongst them those listed in a recent survey [2]:

● Flexible search space. Although these search spaces have been proven effective
for generating well-performing neural architectures, all of them are based on
human knowledge and experience, which inevitably introduce human bias.

● Exploring more application areas: as AutoML techniques have had success in
new areas such as network compression, federate learning, image caption,
recommendation system, and searching for loss and activation functions, they
have the potential to be applied in a wider range of areas.

● Interpretability: providing users with meaningful results is still and challenge
and increasing the mathematical interpretability of AutoML is an important
future research direction.

● Reproducibility: providing ML without incurring considerable resource
consumption is also an important area of research.

● Robustness: most training datasets are well-labelled. However, in real-world
situations, the data inevitably contain noise (e.g., mislabelling and inadequate
information). Even worse, the data might be modified to be adversarial with
carefully designed noises. Deep learning models can be easily fooled by
adversarial data,

● Joint HPO and AO: there is a tremendous overlap between the methods used in
HPO and AO. Future work can look at jointly optimising both hyperparameters
and architectures.

● Complete AutoML pipeline: achieving a complete AutoML pipeline is still
problematic.

● Lifelong learning: the system should be able to reuse prior knowledge to solve
new tasks. We already mentioned meta-learning but unsupervised learning is
still an active research area. Some work also looks at how to train a model using
only new data while preserving its original capabilities

Regarding the last point, AutoML tools work on the assumption that we have labelled
data, but in some cases, only a portion of the data may have labels or even none at all.
Liu et al. [93] proposed a general problem setup, namely unsupervised
neural-architecture search (UnNAS), to explore whether labels are necessary for
architecture search. They experimentally demonstrated that the architectures
searched without labels are competitive compared with those searched with labels.

On the business side of AutoML, the main issues are achieving the right balance
between several often-conflicting forces [93]. One of them is how to express the
problem not in terms of an ML task but as a set of business objectives with associated
measures such as competitiveness, successfulness, and financial benefits [94]. Another
is how to achieve transparency (explanations), usability (UI Design, UI aids) and
performance (information quality) at the same time. Finally, establishing trust in
AutoML is an important issue trust [92]. These issues are all interlinked e.g. adding
business objectives may reduce the usability and decrease performance, adding more
transparency may obscure and decrease trust, adding more usability may decrease
performance etc. In some cases, compliance with regulations such as those associated
with automated financial trading [95] is another important consideration.

AutoML Applications in Business: A Case Study Using BrewAI 20

In particular, [92] stresses the importance to provide the ability to “personalise”
AutoML in different contexts. Differences in background knowledge, skills, work
practices, and experience levels make it difficult to claim that AutoML tools ought to
be designed as “one size fits all” [96] for every organisation. Some recent research by
Arya et al. [97] allow for a degree of personalisation to accommodate individual
preferences or different domains of use by defining explanation methods for different
audiences and domains. We anticipate that, some form of AutoML with “human in the
loop” is likely to be the prevalent approach when targeting business applications in
the future.

5. Acknowledgements

We wish to thank BrewAI for sponsoring this research project and in particular Gavin
Whyte, Andy Zeng and Mark Fordree for their help and advice. We also wish to
acknowledge Aarthi Natarajan’s contribution in writing this paper.

AutoML Applications in Business: A Case Study Using BrewAI

6. References

1. Automated Machine Learning : Methods, Systems, Challenges. Springer
International Publishing : Imprint: Springer, Cham (2019).

2. He, X., Zhao, K., Chu, X.: AutoML: A survey of the state-of-the-art.
Knowledge-Based Systems. 212, (2021). https://doi.org/10.1016/j.knosys.2020.106622.

3. Chawla, N. v, Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: SMOTE: Synthetic
minority over-sampling technique. The Journal of artificial intelligence research. 16,
321–357 (2002).

4. Fernández, A., García, S., Herrera, F., Chawla, N. v: SMOTE for Learning from
Imbalanced Data: Progress and Challenges, Marking the 15-year Anniversary. The
Journal of artificial intelligence research. 61, 863–905 (2018).

5. Luo, Y., Wang, M., Zhou, H., Yao, Q., Tu, W.-W., Chen, Y., Dai, W., Yang, Q.:
AutoCross: Automatic Feature Crossing for Tabular Data in Real-World Applications. In:
Proceedings of the 25th ACM SIGKDD International Conference on knowledge
discovery & data mining. pp. 1936–1945. ACM (2019).

6. Falkner, S., Klein, A., Hutter, F.: BOHB: Robust and Efficient Hyperparameter
optimisation at Scale. (2018).

7. Mockus, J.: Application of Bayesian approach to numerical methods of global
and stochastic optimisation. Journal of global optimisation. 4, 347–365 (1994).

8. Zimmer, L., Lindauer, M., Hutter, F.: Auto-Pytorch: Multi-Fidelity MetaLearning
for Efficient and Robust AutoDL. IEEE Transactions on Pattern Analysis and Machine
Intelligence. 43, 3079–3090 (2021). https://doi.org/10.1109/TPAMI.2021.3067763.

9. Li, L., Jamieson, K., DeSalvo, G., Rostamizadeh, A., Talwalkar, A.: Hyperband: A
novel bandit-based approach to hyperparameter optimisation. Journal of machine
learning research. 18, 1–52 (2018).

10. Elsken, T., Metzen, J.H., Hutter, F.: Neural Architecture Search: A Survey. (2018).

11. Yu, K., Sciuto, C., Jaggi, M., Musat, C., Salzmann, M.: Evaluating the Search Phase
of Neural Architecture Search. (2019).

12. Zhong, Z., Yan, J., Wu, W., Shao, J., Liu, C.-L.: Practical Block-Wise Neural Network
Architecture Generation. Presented at the September (2018).
https://doi.org/10.1109/CVPR.2018.00257.

13. Baker, B., Gupta, O., Naik, N., Raskar, R.: Designing Neural Network Architectures
using Reinforcement Learning. ArXiv. abs/1611.02167, (2017).

14. Zoph, B., Vasudevan, V., Shlens, J., Le, Q.: Learning Transferable Architectures for
Scalable Image Recognition. Presented at the September (2018).
https://doi.org/10.1109/CVPR.2018.00907.

15. Zoph, B., Le, Q. v: Neural Architecture Search with Reinforcement Learning.
(2016).

16. Pham, H., Guan, M., Zoph, B., Le, Q., Dean, J.: Efficient Neural Architecture Search
via Parameters Sharing. In: Dy, J. and Krause, A. (eds.) Proceedings of the 35th
International Conference on Machine Learning. pp. 4095–4104. PMLR (2018).

17. Stanley, K.O., Miikkulainen, R.: Evolving Neural Networks through Augmenting
Topologies. Evol. Comput. 10, 99–127 (2002). https://doi.org/10.1162/106365602320169811.

21

AutoML Applications in Business: A Case Study Using BrewAI

18. Miikkulainen, R., Liang, J., Meyerson, E., Rawal, A., Fink, D., Francon, O., Raju, B.,
Shahrzad, H., Navruzyan, A., Duffy, N., Hodjat, B.: Chapter 15 - Evolving Deep Neural
Networks. In: Kozma, R., Alippi, C., Choe, Y., and Morabito, F.C. (eds.) Artificial
Intelligence in the Age of Neural Networks and Brain Computing. pp. 293–312.
Academic Press (2019).
https://doi.org/https://doi.org/10.1016/B978-0-12-815480-9.00015-3.

19. Real, E., Moore, S., Selle, A., Saxena, S., Suematsu, Y.L., Tan, J., Le, Q., Kurakin, A.:
Large-Scale Evolution of Image Classifiers. (2017).

20. Real, E., Aggarwal, A., Huang, Y., Le, Q. v: Regularized Evolution for Image
Classifier Architecture Search. Proceedings of the AAAI Conference on Artificial
Intelligence. 33, 4780–4789 (2019). https://doi.org/10.1609/aaai.v33i01.33014780.

21. Suganuma, M., Shirakawa, S., Nagao, T.: A Genetic Programming Approach to
Designing Convolutional Neural Network Architectures. (2017).

22. Elsken, T., Metzen, J.H., Hutter, F.: Efficient Multi-objective Neural Architecture
Search via Lamarckian Evolution. (2018).

23. Xie, L., Yuille, A.: Genetic CNN. (2017).

24. Liu, H., Simonyan, K., Yang, Y.: DARTS: Differentiable Architecture Search. (2018).

25. Ahmed, K., Torresani, L.: MaskConnect: Connectivity Learning by Gradient
Descent. In: Computer Vision – ECCV 2018. pp. 362–378. Springer International
Publishing, Cham (2018).

26. Shin, R., Packer, C., Song, D.: Workshop track-ICLR 2018 DIFFERENTIABLE
NEURAL NETWORK ARCHITECTURE SEARCH.

27. Mendoza Hector and Klein, A. and F.M. and S.J.T. and U.M. and B.M. and D.M.
and L.M. and H.F.: Towards Automatically-Tuned Deep Neural Networks. In: Hutter
Frank and Kotthoff, L. and V.J. (ed.) Automated Machine Learning: Methods, Systems,
Challenges. pp. 135–149. Springer International Publishing, Cham (2019).
https://doi.org/10.1007/978-3-030-05318-5_7.

28. Zela, A., Klein, A., Falkner, S., Hutter, F.: Towards Automated Deep Learning:
Efficient Joint Neural Architecture and Hyperparameter Search. (2018).

29. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential Model-Based optimisation
for General Algorithm Configuration. In: Learning and Intelligent optimisation. pp.
507–523. Springer Berlin Heidelberg, Berlin, Heidelberg (2011).

30. Klein, A., Falkner, S., Bartels, S., Hennig, P., Hutter, F.: Fast Bayesian optimisation
of Machine Learning Hyperparameters on Large Datasets. (2016).

31. Bergstra, J., Yamins, D., Cox, D.D.: Making a Science of Model Search:
Hyperparameter optimisation in Hundreds of Dimensions for Vision Architectures. In:
Proceedings of the 30th International Conference on International Conference on
Machine Learning - Volume 28. pp. I–115–I–123. JMLR.org (2013).

32. Falkner, S., Klein, A., Hutter, F.: Workshop track-ICLR 2018 PRACTICAL
HYPERPARAMETER optimisation FOR DEEP LEARNING.

33. Yang, Z., Wang, Y., Chen, X., Shi, B., Xu, C., Xu, C., Tian, Q., Xu, C.: CARS: Continuous
Evolution for Efficient Neural Architecture Search. (2019).

34. Maziarz, K., Tan, M., Khorlin, A., Georgiev, M., Gesmundo, A.: Evolutionary-Neural
Hybrid Agents for Architecture Search. (2018).

35. Chen, Y., Meng, G., Zhang, Q., Xiang, S., Huang, C., Mu, L., Wang, X.: Reinforced
Evolutionary Neural Architecture Search. (2018).

22

AutoML Applications in Business: A Case Study Using BrewAI

36. Sun, Y., Wang, H., Xue, B., Jin, Y., Yen, G.G., Zhang, M.: Surrogate-Assisted
Evolutionary Deep Learning Using an End-to-End Random Forest-Based Performance
Predictor. IEEE transactions on evolutionary computation. 24, 350–364 (2020).

37. Wang, B., Sun, Y., Xue, B., Zhang, M.: A Hybrid Differential Evolution Approach to
Designing Deep Convolutional Neural Networks for Image Classification. (2018).

38. Staniak, M., Biecek, P.: The landscape of R packages for automated exploratory
data analysis. The R journal. 11, 347–369 (2019).

39. Krishnan, S., Franklin, M.J., Goldberg, K., Wu, E.: BoostClean: Automated Error
Detection and Repair for Machine Learning. ArXiv. abs/1711.01299, (2017).

40. Krishnan, S., Wu, E.: AlphaClean: Automatic Generation of Data Cleaning
Pipelines. (2019).

41. Kotthoff Lars and Thornton, C. and H.H.H. and H.F. and L.-B.K.: Auto-WEKA:
Automatic Model Selection and Hyperparameter optimisation in WEKA. In: Hutter
Frank and Kotthoff, L. and V.J. (ed.) Automated Machine Learning: Methods, Systems,
Challenges. pp. 81–95. Springer International Publishing, Cham (2019).
https://doi.org/10.1007/978-3-030-05318-5_4.

42. Olson Randal S. and Moore, J.H.: TPOT: A Tree-Based Pipeline optimisation Tool
for Automating Machine Learning. In: Hutter Frank and Kotthoff, L. and V.J. (ed.)
Automated Machine Learning: Methods, Systems, Challenges. pp. 151–160. Springer
International Publishing, Cham (2019). https://doi.org/10.1007/978-3-030-05318-5_8.

43. Feurer Matthias and Klein, A. and E.K. and S.J.T. and B.M. and H.F.: Auto-sklearn:
Efficient and Robust Automated Machine Learning. In: Hutter Frank and Kotthoff, L.
and V.J. (ed.) Automated Machine Learning: Methods, Systems, Challenges. pp. 113–134.
Springer International Publishing, Cham (2019).
https://doi.org/10.1007/978-3-030-05318-5_6.

44. Caruana, R., Niculescu-Mizil, A., Crew, G., Ksikes, A.: Ensemble Selection from
Libraries of Models. (2004).

45. microsoft/nni: An open source AutoML toolkit for automate machine learning
lifecycle, including feature engineering, neural architecture search, model
compression and hyper-parameter tuning., https://github.com/Microsoft/nni, last
accessed 2021/09/30.

46. Bischl, B., Richter, J., Bossek, J., Horn, D., Thomas, J., Lang, M.: mlrMBO: A
Modular Framework for Model-Based optimisation of Expensive Black-Box Functions.
(2017).

47. CRAN - Package parsnip,
https://cran.r-project.org/web/packages/parsnip/index.html, last accessed 2021/09/30.

48. Barga, R.: Predictive Analytics with Microsoft Azure Machine Learning. Apress,
Berkeley, CA (2015).

49. Das, P., Ivkin, N., Bansal, T., Rouesnel, L., Gautier, P., Karnin, Z., Dirac, L.,
Ramakrishnan, L., Perunicic, A., Shcherbatyi, I., Wu, W., Zolic, A., Shen, H., Ahmed, A.,
Winkelmolen, F., Miladinovic, M., Archembeau, C., Tang, A., Dutt, B., Grao, P.,
Venkateswar, K.: Amazon SageMaker Autopilot: A white box AutoML solution at scale.
In: Proceedings of the 4th Workshop on Data Management for End-To-End Machine
Learning, DEEM 2020 - In conjunction with the 2020 ACM SIGMOD/PODS Conference.
Association for Computing Machinery, Inc (2020).
https://doi.org/10.1145/3399579.3399870.

50. Wong, C., Houlsby, N., Lu, Y., Gesmundo, A.: Transfer Learning with Neural
AutoML. (2018).

23

AutoML Applications in Business: A Case Study Using BrewAI

51. Wang, D., Ram, P., Weidele, D., Liu, S., Muller, M., Weisz, J., Valente, A., Chaudhary,
A., Torres, D., Samulowitz, H., Amini, L.: AutoAI: Automating the End-to-End AI Lifecycle
with Humans-in-the-Loop. In: Proceedings of the 25th International Conference on
intelligent user interfaces companion. pp. 77–78. ACM (2020).

52. Shah, S.Y., Patel, D., Vu, L., Dang, X.-H., Chen, B., Kirchner, P., Samulowitz, H.,
Wood, D., Bramble, G., Gifford, W.M., Ganapavarapu, G., Vaculin, R., Zerfos, P.: AutoAI-TS:
AutoAI for Time Series Forecasting. In: Proceedings of the 2021 International
Conference on Management of Data. pp. 2584–2596. Association for Computing
Machinery, New York, NY, USA (2021). https://doi.org/10.1145/3448016.3457557.

53. H2O.ai | AI Cloud Platform, https://www.h2o.ai/, last accessed 2021/09/22.

54. Darren Cook: Practical Machine Learning with H2O. O’Reilly Media (2016).

55. Feurer Matthias and Hutter, F.: Hyperparameter optimisation. In: Hutter Frank
and Kotthoff, L. and V.J. (ed.) Automated Machine Learning: Methods, Systems,
Challenges. pp. 3–33. Springer International Publishing, Cham (2019).
https://doi.org/10.1007/978-3-030-05318-5_1.

56. Vanschoren, J.: Meta-Learning. In: Hutter Frank and Kotthoff, L. and V.J. (ed.)
Automated Machine Learning: Methods, Systems, Challenges. pp. 35–61. Springer
International Publishing, Cham (2019). https://doi.org/10.1007/978-3-030-05318-5_2.

57. Finn, C., Abbeel, P., Levine, S.: Model-Agnostic Meta-Learning for Fast
Adaptation of Deep Networks. (2017).

58. Nichol, A., Achiam, J., Schulman, J.: On First-Order Meta-Learning Algorithms.
(2018).

59. Mishra, N., Rohaninejad, M., Chen, X., Abbeel, P.: A Simple Neural Attentive
Meta-Learner. (2017).

60. Yao, H., Wu, X., Tao, Z., Li, Y., Ding, B., Li, R., Li, Z.: Automated Relational
Meta-learning. (2020).

61. Yakovlev, A., Moghadam, H.F., Moharrer, A., Cai, J., Chavoshi, N., Varadarajan, V.,
Agrawal, S.R., Idicula, S., Karnagel, T., Jinturkar, S., Agarwal, N.: Oracle AutoML.
Proceedings of the VLDB Endowment. 13, 3166–3180 (2020).
https://doi.org/10.14778/3415478.3415542.

62. Li, Y., Shen, Y., Zhang, W., Jiang, J., Ding, B., Li, Y., Zhou, J., Yang, Z., Wu, W., Zhang,
C., Cui, B.: VolcanoML: Speeding up End-to-End AutoML via Scalable Search Space
Decomposition. (2021).

63. Welcome to Apache Avro!, https://avro.apache.org/, last accessed 2021/09/30.

64. Apache Parquet, https://parquet.apache.org/, last accessed 2021/09/30.

65. TFRecord and tf.train.Example | TensorFlow Core,
https://www.tensorflow.org/tutorials/load_data/tfrecord, last accessed 2021/09/30.

66. Breck, E., Polyzotis, N., Roy, S., Whang, S., Zinkevich, M.: Data Validation for
Machine Learning. In: Talwalkar, A., Smith, V., and Zaharia, M. (eds.) Proceedings of
Machine Learning and Systems 2019, MLSys 2019, Stanford, CA, USA, March 31 - April 2,
2019. mlsys.org (2019).

67. Zaharia, M., Chowdhury, M., Franklin, M.J., Shenker, S., Stoica, I.: Spark: Cluster
Computing with Working Sets. In: Proceedings of the 2nd USENIX Conference on Hot
Topics in Cloud Computing. p. 10. USENIX Association, USA (2010).

68. Apache Beam, https://beam.apache.org/, last accessed 2021/09/30.

69. Welcome to Apache Flume — Apache Flume, https://flume.apache.org/, last
accessed 2021/09/30.

24

AutoML Applications in Business: A Case Study Using BrewAI

70. Murray, D.G., Simsa, J., Klimovic, A., Indyk, I.: tf.data: A Machine Learning Data
Processing Framework. Proc. VLDB Endow. 14, 2945–2958 (2021).

71. Lindauer, M., Hutter, F.: Best Practices for Scientific Research on Neural
Architecture Search, (2019).

72. Eggensperger, K.: Towards an Empirical Foundation for Assessing Bayesian
optimisation of Hyperparameters. Presented at the (2013).

73. Bischl, B., Kerschke, P., Kotthoff, L., Lindauer, M., Malitsky, Y., Fréchette, A., Hoos,
H., Hutter, F., Leyton-Brown, K., Tierney, K., Vanschoren, J.: ASlib: A benchmark library
for algorithm selection. Artificial Intelligence. 237, 41–58 (2016).
https://doi.org/https://doi.org/10.1016/j.artint.2016.04.003.

74. Ying, C., Klein, A., Real, E., Christiansen, E., Murphy, K., Hutter, F.: NAS-Bench-101:
Towards Reproducible Neural Architecture Search. (2019).

75. Zela, A., Siems, J., Hutter, F.: NAS-Bench-1Shot1: Benchmarking and Dissecting
One-shot Neural Architecture Search. (2020).

76. Dong, X., Yang, Y.: NAS-Bench-201: Extending the Scope of Reproducible Neural
Architecture Search. ArXiv. abs/2001.00326, (2020).

77. Agrapetidou, A., Charonyktakis, P., Gogas, P., Papadimitriou, T., Tsamardinos, I.:
An AutoML application to forecasting bank failures. Applied economics letters. 28, 5–9
(2021).

78. Li, Y., Wang, Z., Ding, B., Zhang, C.: AutoML: A Perspective Where Industry Meets
Academy. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge
Discovery & Data Mining. pp. 4048–4049. Association for Computing Machinery,
New York, NY, USA (2021). https://doi.org/10.1145/3447548.3470827.

79. Guyon Isabelle and Sun-Hosoya, L. and B.M. and E.H.J. and E.S. and L.Z. and J.D.
and R.B. and S.M. and S.M. and S.A. and T.W.-W. and V.E.: Analysis of the AutoML
Challenge Series 2015–2018. In: Hutter Frank and Kotthoff, L. and V.J. (ed.) Automated
Machine Learning: Methods, Systems, Challenges. pp. 177–219. Springer International
Publishing, Cham (2019). https://doi.org/10.1007/978-3-030-05318-5_10.

80. Mao, Y., Wang, D., Muller, M., Varshney, K., Baldini, I., Dugan, C., Mojsilović, A.:
How Data ScientistsWork Together With Domain Experts in Scientific Collaborations:
To Find The Right Answer Or To Ask The Right Question? Proceedings of the ACM on
human-computer interaction. 3, 1–23 (2019).

81. Wang, Q., Ming, Y., Jin, Z., Shen, Q., Liu, D., Smith, M., Veeramachaneni, K., Qu, H.:
ATMSeer: Increasing Transparency and Controllability in Automated Machine
Learning. In: Proceedings of the 2019 CHI Conference on human factors in computing
systems. pp. 1–12. ACM (2019).

82. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, É.: Scikit-Learn: Machine Learning
in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011).

83. Commercial grade deep learning tooling - brewai, https://www.brewai.com/, last
accessed 2021/09/30.

84. Whyte, G., Zeng, A.: BrewAI Features Development Road Map, Internal
Company Report. (2021).

85. PyTorch, https://pytorch.org/, last accessed 2021/10/04.

25

AutoML Applications in Business: A Case Study Using BrewAI

86. Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A Next-generation
Hyperparameter optimisation Framework. In: Proceedings of the 25th ACM SIGKDD
International Conference on knowledge discovery & data mining. pp. 2623–2631. ACM
(2019).

87. Bergstra, J., Komer, B., Eliasmith, C., Yamins, D., Cox, D.D.: Hyperopt: a Python
library for model selection and hyperparameter optimisation. Computational science &
discovery. 8, 14008 (2015).

88. Dhamdhere, K., Sundararajan, M., Yan, Q.: How Important Is a Neuron? (2018).

89. Apache Airflow, https://airflow.apache.org/, last accessed 2021/09/30.

90. Kubernetes, https://kubernetes.io/, last accessed 2021/09/22.

91. Titanic - Machine Learning from Disaster | Kaggle,
https://www.kaggle.com/c/titanic, last accessed 2021/09/30.

92. Drozdal, J., Weisz, J., Wang, D., Dass, G., Yao, B., Zhao, C., Muller, M., Ju, L., Su, H.:
Trust in AutoML: exploring information needs for establishing trust in automated
machine learning systems. In: Proceedings of the 25th International Conference on
intelligent user interfaces. pp. 297–307. ACM (2020).

93. Liu, C., Dollár, P., He, K., Girshick, R., Yuille, A., Xie, S.: Are Labels Necessary for
Neural Architecture Search?, (2020).

94. Cisneros Cabrera, S., Mehandjiev, N., Felfernig, A., Sampaio, P., Kununka, S.: A
Laddering Approach to Explore the Motivations of Taking Computer Advice for Supply
Networks Formation. In: PACIS 2020 Proceedings. 218, (2020).

95. Rabhi, F.A., Mehandjiev, N., Baghdadi, A.: State-of-the-Art in Applying Machine
Learning to Electronic Trading. In: Proceedings of International Workshop on
Enterprise Applications, Markets and Services in the Finance Industry (FinanceCom
2020). pp. 3–20 (2020).

96. Hou, Y., Wang, D.: Hacking with NPOs: Collaborative Analytics and Broker Roles
in Civic Data Hackathons. Proceedings of the ACM on human-computer interaction. 1,
1–16 (2017).

97. Arya, V., Bellamy, R.K.E., Chen, P.-Y., Dhurandhar, A., Hind, M., Hoffman, S.C.,
Houde, S., Liao, Q.V., Luss, R., Mojsilović, A., Mourad, S., Pedemonte, P., Raghavendra, R.,
Richards, J., Sattigeri, P., Shanmugam, K., Singh, M., Varshney, K.R., Wei, D., Zhang, Y.:
One Explanation Does Not Fit All: A Toolkit and Taxonomy of AI Explainability
Techniques. (2019).

26

