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Abstract

The demand for simple solutions that deliver meaningful results without the need to 
be operated by machine learning (ML)-experts has given rise to the field of automated 
machine learning (AutoML). It enables domain scientists to apply ML without the need 
to understand and learn the technologies that support these techniques in detail. This 
paper investigates the state-of-the-art in the area of AutoML particularly in the 
context of business applications. One of the problems identified is that most existing 
AutoML solutions are tied to a particular platform or need specialised staff to operate 
them. We then proceed to explore a new AutoML tool called BrewAI, which addresses 
these issues by offering platform-independent facilities which do not rely on 
specialised staff. BrewAI is designed to be a simple and cost-effective solution using 
service-oriented design principles and autonomous software services. We then 
explore the usability and model explainability offered by BrewAI by applying it to 
analyse a reference dataset. We conclude that BrewAI offers usable interface for the 
application of machine learning models which does not require any data 
pre-processing and modelling skills. BrewAI also offers model explainability facilities 
by showing necessary details about the data and the model which are 
understandable by business users. The paper concludes by generalising our findings 
to the class of AutoML tools, presenting the challenges facing them and outlining 
areas of future work.
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1. Introduction

For many years, the area of machine 
learning (ML) has been the preserve of 
ML scientists creating a wide variety of 
models and algorithms and applying 
them to new and emerging datasets. In 
particular, the popularity of deep 
learning methods has enabled key 
advances in many application domains, 
such as computer imaging, speech 
recognition, and search optimisation. As 
massive amounts of data are being 
made available by big technology 
companies as well as public agencies, 
many businesses are heavily investing in 
the development of practical 
applications of ML techniques for 
improving their business operations or 
creating new revenue streams, possibly 
leveraging their own private enterprise 
data. 

However, the use of ML techniques is still 
fraught with several technical difficulties. 
The process of taking an ML model from 
conceptualisation to deployment to solve 
a business problem is a complex, 
time-consuming iterative process 
comprising a series of steps that involves 
data collection and integration, data 
pre-processing, feature selection and 
transformation, model training, model 
evaluation, tuning, and deployment. This 
pipeline process needs to be supported 
by appropriate computational resources 
during the model training and inference 
phases. 

Despite the availability of a huge panoply 
of technologies, many challenges remain 
such as working out which ML 
techniques to apply to which problem, 
how to ensure data quality and how to 
fine-tune ML parameters properly.  
Further, ML is a continuous cycle that 
requires ongoing model monitoring and 
drifts detection even after the model has 
been deployed to production to ensure 
that the model’s performance does not 
decline over time.  Addressing these 
challenges is critical for the successful 
implementation of end-to-end ML 
pipelines at scale. 

The demand for simple solutions that 
deliver meaningful results without the 
need to be operated by ML-experts has 
given rise to the field of automated 
machine learning (AutoML). The goal of 
AutoML is to make ML more systematic 
and efficient by automating the various 
phases of the ML pipeline thereby 
minimising human involvement in the 
orchestration of the ML pipeline. It 
enables domain scientists to apply ML 
without the need to understand and 
learn the technologies that support 
these techniques in detail. The purpose 
of this paper is to investigate the 
state-of-the-art in the area of AutoML 
particularly in the context of business 
applications. It presents our experiences 
in developing a practical application 
using the BrewAI AutoML system as a 
case study. It draws general conclusions 
about recent developments in this space 
and outlines areas of future work.
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2. Literature Review

Basic concepts

According to [1], AutoML refers to the automation of several activities related to ML 
such as automating data collection and experiment design; automating data clean up 
and missing data imputation; automating feature selection and transformation; 
automating model discovery, criticism, and explanation; automating the allocation of 
computational resources; automating hyperparameter optimisation (HPO), 
automating inference and automating model monitoring and anomaly detection.

As described in [2] and illustrated in Fig. 1, this AutoML pipeline can be broadly broken 
into four phases: data preparation, feature engineering, model generation, and model 
evaluation.

Data preparation

The first phase of an ML pipeline is data preparation which typically comprises data 
collection, data augmentation and data cleaning.  Data collection involves preparing 
the data set for building a model and here data can be ingested from multiple 
sources. A commonly occurring problem in data collection is handling imbalanced 
datasets, for example in detection of fraudulent credit-card transactions, a dataset of 
credit card transactions may only have a small percentage of fraudulent observations. 
Techniques such as under-sampling the majority class or over-sampling the minority 
class are often applied to address this problem. Data augmentation techniques such 
as SMOTE [3, 4] are often preferred over the former techniques to avoid over-fitting of 
a model which involves creation of synthetic data based on the original data. Ingested 
data can be in multiple languages, have special characters, represented in different 
scales, may contain outliers or there could be missing values in data. A good data set 
is critical to the accuracy of a model, so the process of data cleaning is used to cleanse 
data.  Another important task performed in the data preparation phase help users 
better understand the data characteristics, identify hidden relationships and employs 
visual and programmatic methods to collect descriptive statistics, numerical 
summaries, create plots of distribution (e.g. histograms, boxplots) and conduct 
bivariate and multivariate analysis (through creating heatmaps, scatter plots etc.).

Fig.1. An overview of AutoML pipeline (adapted from He et al. [2])
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Feature Engineering

Feature engineering is the process of extracting useful and relevant features from raw 
data.  One important use-case for feature engineering is to resolve the curse of 
dimensionality where too many features lead to a sparse dataset.  Feature engineering 
can comprise three kinds of tasks – feature extraction, feature selection and feature 
construction.  Feature extraction reduces the dimensionality of dataset by reducing 
redundant features using prominent algorithms such as principal component analysis 
(PCA), t-distributed stochastic embedding, feature selection uses a ranking score to 
rank and select the most important features while feature creation expands on 
original feature space to create more meaningful features. In automatic feature 
engineering, hierarchical feature extractors are learned in an end-to-end fashion from 
data rather than manually designed. Recent works on automatic feature generation 
such as the one reported in [5] focus on designing different search strategies that 
prune as many of the candidates to be evaluated as possible, while aiming to keep the 
most useful interactive features.

Model generation

Fig. 1 shows that model generation is divided into search space which defines the 
design principles of ML models and optimisation methods. Search space consists of 
traditional ML models (e.g., SVM and KNN), and neural architectures. In this paper, we 
will primarily focus on neural architectures. optimisation methods are classified into 
hyperparameter optimisation (HPO) and architecture optimisation (AO), where the 
former indicates the training-related parameters (e.g., the learning rate and batch 
size), and the latter indicates the model-related parameters (e.g., the number of layers 
for neural architectures). Some researchers refer to AutoML as neural architecture 
search (NAS) but it is more general so NAS can be considered to be a sub-field of 
AutoML.

At the heart of an AutoML system is the process of generating a model which consists 
of several steps, one of which is Hyperparameter optimisation (HPO). In statistics, a 
hyperparameter captures the prior belief before data is observed so these parameters 
need to be initialised before training an ML model. In particular, deep neural networks 
depend on a wide range of hyperparameter choices about the neural network’s 
architecture, regularisation, and optimisation. HPO improves over the default settings 
provided by common ML libraries and allows general-purpose pipelines to be adapted 
to datasets from specific application domains. Common HPO techniques include Grid 
Search, Random Search [6], and Bayesian Optimisation [7] and many existing AutoML 
tools use variations of these techniques. For example, BOHB used in Auto-Pytorch [8] 
combines Bayesian optimisation (BO) with Hyperband (HB) [9] and has been shown to 
outperform BO and HB on many tasks. It also achieves speed ups of up to 55x over 
Random Search.

Feature Engineering and HPO led to the need for increasingly more complex neural 
architectures so the process of designing such architectures had to be automated as 
well leading to Architecture Optimisation (AO) methods. These methods may also be 
referred to as search strategy [10] or search policy [11]. The commonly used AO 
methods contain reinforcement learning (RL) [12–16], evolution-based algorithm 
(EA)[17–23] ,and gradient descent (GD) [24–26], surrogate model-based optimisation 
(SMBO) [6, 27–32], and hybrid AO methods [33–37].



AutoML Applications in Business: A Case Study Using BrewAI 7

AutoML tools

There is a huge diversity in the tools available to support AutoML, however, efforts in 
this field are somewhat fragmented.  Current automation tools and techniques target 
individual phases of the ML pipeline.

For example, the data preparation phase is well supported by a multitude of R 
packages and Python libraries aimed at automating different tasks in this step.  For 
example, automated EDA tools such as autoEDA, DataExplorer here aim to make data 
exploration phase fast and easy as possible [38].  A complete survey of the various R 
packages to support EDA can be found in [38].  Similarly, techniques such as 
BoostClean, AlphaClean [39, 40] have been applied to automate the process of data 
cleaning.  Automated data augmentation techniques for textual, audio and image 
data have received much attention in recent years [38].  Automation efforts in the 
space of feature engineering target a type of feature engineering task e.g. 
decision-tree based automated feature construction methods

Auto-WEKA [41] is one of the first AutoML systems based on the well-known WEKA 
machine learning toolkit. TPOT [42] automatically constructs and optimises 
tree-based machine learning pipelines from a small set of fixed ML components that 
are connected in predefined ways. Auto-sklearn [43] is similar but adds several 
improvements such as meta-learning for warm starting the optimisation and 
automatic ensembling. Inspired by Auto-sklearn, Auto-PyTorch [8] uses an ensembling 
method to implement an automated post-hoc ensemble model selection [44] for 
efficient optimisation. Microsoft offers NNI [45] as an open-source package to be used 
within a Python environment. Besides Python, several AutoML tools based on R such 
as mlrMBO [46], parsnip [47] are surveyed in [38].

As mentioned earlier, several companies are now developing their own AutoML 
systems that aim to assist organisations to deploy ML pipelines with minimal effort 
and costs. Big tech companies are offering AutoML products such as Azure Machine 
Learning [48] and Amazon SageMaker Autopilot [49] and Google’s AutoML [50]. 
Automated Artificial Intelligence (AutoAI) [51] is an IBM product (part of Watson) which 
extends the automation of model building towards automation of the full ML life cycle. 
It puts more focus on preparing data for training, choosing the features, and the best 
performing pipelines can be put into production to process new data, and deliver 
predictions based on the model training. AutoAI-TS [52] is a framework for time-series 
operating as a new service in AutoAI.

One of the problems with these solutions is that they are part of a much bigger 
system, often tied to a particular platform or cloud infrastructure or need to be 
installed on a user's desktop. Some solutions are more focused on AutoML and offered 
in a platform-independent manner. They include H2O Driverless AI [53, 54] which 
supports fully- or semi-automated feature engineering and selection, model tuning 
and training of predictive models and DataRobot (which has recently acquired 
Algorithmia). Still, these solutions may be tied to specific infrastructures that bring 
high costs to Small and Medium Enterprises (SMEs) and government organisations 
and may not be easy to deploy and operate by non-expert staff. 
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Performance of AutoML tools

There are many techniques that can be used to boost AutoML tools. In practical 
applications, it is often necessary to trade off two or more objectives, such as the 
performance of a model and IT resource management. This is discussed in detail in 
[55].

One of the key ideas used to improve the performance of AutoML tools is 
meta-learning. As different configurations are being explored (HPO, pipeline 
components and/or network architecture components), meta-learning is the process 
was based on model evaluation, better configurations are selected through a process 
of learning. In other words, meta-learning helps build AutoML systems that 
continuously improve over time [56]. Proposed meta-learning methods include MAML 
[57], Reptile [58], SNAIL [59], and Relational Meta-Learning[60] . Meta-learning is used 
in many AutoML tools such as Oracle AutoML [61].

There are many other areas that offer potential to improve performance in AutoML 
tools, some of them involve user input. For example, VolcanoML [62] introduces and 
implements basic building blocks that decompose a large search space into smaller 
ones and allows users to utilise these building blocks to compose an execution plan 
for the AutoML problem at hand. 

Other performance-enhancing techniques work behind the scenes. A number of 
offline data pre-processing technologies exist such as Avro [63], Parquet [64], or 
TFRecord [65] which facilitate extracting features from raw data, validating data [66], 
and converting data to binary formats to enable higher throughput data ingestion. 
Some batch computing frameworks such as Apache Spark [67], Beam [68], and Flume 
[69] are also commonly used for offline pre-processing. There have been attempts to 
build simple data loading systems that could be shared between multiple machine 
learning jobs. For example, the tf.data API provides generic operators that can be 
parameterised by user-defined functions, composed, and reused across multiple ML 
domains [70].

The use of parallel computing techniques is also important in improving the 
performance of AutoML tools without user intervention. For example, the data 
pre-processing stage could leverage parallelism and pipelining to overlap 
pre-processing with model training computations. Determining the optimal degree of 
parallelism and amount of data to prefetch is often challenging as it depends on the 
nature of the workload and the hardware resources available.

There is also a growing interest in well-designed AutoML benchmarks to take 
reproducibility and comparability of AutoML approaches into account [71]. For 
example, HPOlib [72] provides benchmarks for hyperparameter optimisation, ASlib 
[73] for meta-learning of algorithm selection and NASBench-101 [74], NASBench-1 Shot 
1 [75], and NASBench-201 [76] for neural architecture search. LCBench1 [8], a new 
benchmark for studying multi-fidelity optimisation w.r.t. learning curves on a joint 
optimisation space of architectural and training hyperparameters across 35 datasets. 
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Business applications of AutoML

There is no doubt that AutoML tools are becoming increasingly popular and arousing 
more interest in the business community1. There are many published examples of 
using AutoML in business applications e.g. forecasting bank failures by policymakers 
and central banks [77]. A more recent paper discusses other examples of applications 
of AutoML in industry and discusses future research trends [78].

Whilst the goal of scientific research is to create AutoML tools that aim for full 
automation, commercial interests in AutoML aim to offer some form of 
“semi-automation” in assisting organisations deploy ML pipelines at lower costs. For 
this reason, most business applications tend to deal with supervised learning 
problems (classification and regression), feature vector representations and 
homogeneous datasets (same distribution in the training, validation, and test set) [79].

Some of the other challenges reported when using AutoML in the business sector are: 

● How to relate ML to business objectives: non-technical users requirements 
(e.g., business KPIs and policy compliance) are often not aligned with what 
technical users want (e.g., model accuracy and training time) [80]

● Usability: non-technical users need to be able to use the system without ML 
expertise

● Need for transparency: non-technical users do not necessarily understand the 
black-box nature of ML  [81].

● Incomplete pipelines: many AutoML pipeline libraries have been proposed, but 
most of them only focus on some parts of the AutoML pipeline ([2], Fig. 1). e.g 
TPOT [42], Auto-WEAK [41], and Auto-Sklearn [43] are built on top of scikit-learn 
[82]

● Data quality: most progress has been done on model building but the 
bottleneck is now on the data side as data quality is key to producing good 
models for industry.

● Testing of models is also another problem, new techniques from software 
engineering are needed

● Performance: to achieve good performance, businesses need more 
sophisticated solutions which need to be weighed against cost considerations 
(hardware and resources available). 

Most studies point out that the most difficult and hard to automate part is 
understanding the problem domain and exploration of existing data sets. Usually, 
much more time is spent on data preparation and exploration than on model tuning. 
In this paper, we investigate new opportunities for addressing these issues via a new 
AutoML tool namely BrewAI.

1 

https://www.arnnet.com.au/article/691087/how-low-code-platforms-enable-machine-learning/
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BrewAI User Interface

An important component is the BrewAI 
User Interface which displays results at 
different stages of the ML pipeline in a 
way that is easily comprehended by the 
user. The user can also direct the 
different stages like training via simple 
button clicks. There are five stages to 
compute the prediction results from the 
AutoML model, illustrated in Fig. 2. There 
is no restriction in the order to follow 
when performing these five stages, users 
can jump into any stage to check the 
previous actions in that specific stage.
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3. BrewAI Case Study

The review of existing systems has demonstrated some limitations in terms of 
platform and expected skills. New generation of tools are now appearing which 
address these limitations. Here we focus on one of these tools called BrewAI [83] and 
explore its features and the ways in which it alleviates the issues with the existing 
tools. BrewAI is designed to be a simple and cost-effective solution that delivers ML 
functionalities for organisations that don’t have a specialised staff or alternatively used 
by specialised staff with the intention of reducing time to market with AI models. Like 
other AutoML systems, BrewAI simplifies the creation and deployment of ML models. 
Starting from just a simple spreadsheet, a user can train, build and deploy a 
commercial-grade ML model within an IT infrastructure with minimal efforts. This 
section first presents a walkthrough of its user interface. It is followed by a technical 
overview of its architecture and its application in a dataset example. 

Stage 1 - Train. In this stage, users can 
upload the tabular data file to the BrewAI 
webpage through the interface. Fig. 3 
and Fig. 4 show BrewAI’s interfaces for 
training dataset upload and model 
training submission. After clicking the 
“Load Data” button (see Fig. 3), a dataset 
preview will be shown (see Fig. 4), users 
will then select the target column for 
prediction. There is a checkbox for users 
to enable the hyperparameter tuning 
feature in BrewAI if they want a more 
accurate AutoML model, otherwise, 
disabling hyperparameter tuning will get 
a less accurate but more time-efficient 
model. The model will be built after 
clicking the “Submit Model” button (see 
Fig. 4). BrewAI will automatically define 
the type of machine learning tasks 
(regression or classification), handle the 
data pre-processing, and build the 
AutoML model.

Stage 1: Train

Stage 2: Train Progress

Stage 3: Explainable AI

Stage 4: Predict

Stage 5: Predicted Result

Fig. 2. BrewAI’s five stages for AutoML

Fig. 3. BrewAI’s Interface for training dataset upload. 
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Stage 2 – Train Progress. This stage is to 
provide an interface for users to see the 
status of data processing and model 
building. Users could see a parallel 
model-building workflow If they 
submitted multiple models in stage 1(see 
Fig. 5). No action is required from the 
users in this stage.
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importance, and hyperparameter 
optimisation. Fig. 6 and Fig. 7 show 
BrewAI’s interfaces for data and model 
explanation.

Fig. 4. BrewAI’s Interface for loaded dataset review and 
model training submission

Fig. 5. BrewAI’s Interface for the status of data 
processing and model building

Stage 3 – Explainable AI. This stage is to 
show explainable details of the data and 
model after model training is completed. 
The explainable data shows the details of 
data quality and data type for each input 
feature. The explainable model shows 
the details of the class distribution, 
model performance, confusion matrix, 
performance by class, feature

Fig. 6. BrewAI’s Interface (part 1) for data, model, and 
hyperparameter explanation.
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Fig. 7. BrewAI’s Interface (part 2) for data, model, and 
hyperparameter explanation.

Stage 4 – Predict. In this stage, users can 
select a specific model trained in stage 2 
to predict the test dataset. Users are 
allowed to select any previously trained 
model to do the prediction.

Stage 5 – Predicted Results. After 
finishing the prediction in stage 4, users 
can explore the prediction results in this 
stage (see Fig. 8). BrewAI also allows 
users to preview and download 
previously predicted results to csv files by 
clicking buttons (see Fig. 9).

Fig. 8. Interface for result exploration. 

Fig. 9. Right: Interface for result preview and download.
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Technical overview

BrewAI’s software architecture is based on service-oriented design principles in which 
autonomous software services can operate and communicate independently from 
each other. This architecture is illustrated in Fig 10.

The BrewAI engine which is at the heart of the system is responsible for tackling 
supervised learning problems using deep learning methods. It can deal with different 
data types including numerical, text, categorical, and binary. New data types such as 
images are planned to be released in the current roadmap [84]. The engine is built 
over several other systems. Its code base relies on the PyTorch [85] library. 
Hyperparameter optimisation is automatically conducted using Optuna [86] and 
HyperOpt [87]. 

To determine which features are important [88], BrewAI uses different attribution 
techniques including Integrated Gradients for feature attribution and Conductance for 
layer and neuron attribution in order to better understand the neural network 
predicting survival. These basic building blocks for attribution can be utilised to 
improve model interpretability, breaking the traditional "black-box" characterisation of 
neural networks and delving deeper into understanding how and why they make their 
decisions.

As shown in the architecture diagram, BrewAI has the ability to aggregate data from 
different sources using a Workflow/API layer, each data source can be independently 
accessed to encode and feed data into the model. This is supported by an Apache 
Airflow Engine [89] which allows the definition, scheduling, and monitoring of a wide 
range of data processing pipelines. Airflow also provides many plug-and-play 
operators that are ready to execute tasks on Google Cloud Platform, Amazon Web 
Services, Microsoft Azure, and many other third-party services. 

BrewAI gives DevOps engineers and data scientists the ability to observe and control 
multiple machine learning tasks at the same time for maximum efficiency. This is 
achieved via the editable data pipeline features provided by Apache Airflow. By 
accessing Airflow’s WebUI or Python APIs, the DevOps and the performance 
management team can edit and review BrewAI’s AutoML pipelines e.g. creating 
pipelines involving multiple heterogeneous data sources and combine them into one 
dataset, and then submit them for training and making predictions. 
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Data scientists can also have access to BrewAI’s pipelines to further enhance the data 
processing, such as adding data validation and cleansing activities to pipelines. Fig. 11 
shows the WebUI of Apache Airflow for editing BrewAI’s AutoML pipeline.

All BrewAI software components are virtualised in containers using Kubernetes [90]. 
This allows them to be deployed on a scalable cloud platform (e.g. Amazon’s EC2). The 
use of an elastic cloud means the system can adapt to different data sizes and loads. 

Fig. 11. Airflow’s WebUI for editing BrewAI’s AutoML pipeline.

Experiences Using BrewAI on Sample Datasets

Description of datasets used and experimental system

In this case study, we first perform an analysis task using a publicly available dataset to 
evaluate the following four aspects:

1. The model-building experience and the user interface’s usability by 
non-technical experts

2. The model’s explainability
3. The model’s performance 
4. The model’s transparency and understandability

The analysis task is a binary classification with the Titanic dataset [91] which is a 
tabular dataset consisting of 11 columns of features and 981 samples in the training 
dataset, and 1309 samples in the testing dataset. The feature contains integers, string, 
float, and mixtures of string, symbols, and numbers. The machine learning task is to 
predict if a passenger survived based on the given information of the person. 
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Accessibility and Usability of BrewAI

Accessing BrewAI requires an internet connection and a browser to log in to their 
server. All the interfaces would render on the web page and the computation would 
run on the backend server, installation on the local computer is not required. We went 
through five stages in the BrewAI process mentioned in Fig. 2.  Throughout the whole 
implementation process, we mainly use three controls from the interfaces to 
implement the AutoML task: 1. dropdown selection for selecting prediction target and 
models, 2. Confirm buttons for confirming actions and 3. Textbox for naming models. 
The model building and data pre-processing are fully automatic, except for the actions 
that were required for uploading dataset and selecting prediction target. 

Model Explainability of BrewAI

After the data pre-processing and model building finish, a user can access an 
explainable AI page (see Fig. 6 & Fig. 7 – stage 3) to see the explainable features. Table 1 
shows a summary of what explainable features are available in BrewAI divided 
according to data and model feature groups and types.

Explainable 
feature 
group

Explainable feature 
type Explainable feature How BrewAI explains it in the case study

Data 
Information

Basic Information Number of Rows Show the value of the count

Basic Information Number of cells with 
inf/-inf values

Show the value of the count

Basic Information Number of columns Show the value of the count

Basic Information Number of cells with Null 
values

Show the value of the count

Data Quality Empty Columns Show the value of count and what action was 
taken

Data Quality Rows with empty target 
variable values

Show the value of count and what action was 
taken

Data Quality Duplicate Rows Show the value of count and what action was 
taken

Feature(column) Feature (column) Name Show each feature name

Feature(column) Feature (column) Data 
Type

Show how BrewAI classifies the feature type: 
Categorical, Numeric, text, etc.

Feature(column) Feature (column) Data 
Sub Type

Show how BrewAI classifies the feature subtype: 
binary, short/long text, integer, float, etc.

  Feature(column) Feature (column) Empty 
Values

Show count and percentage of empty value for 
each feature

Model 
Information

Basic Info Problem Type Show the type, e.g., classification or regression

Basic Info Model Type Show the type, e.g., deep neural network

Basic Info Train/Test Split Show sizes of training, validation, and testing data

Class Distribution Class Distribution Show class name, sample count, and percentage

Model Performance Metric type Show the type of performance, e.g., accuracy, R2

Model Performance Metric value Show performance values, e.g., accuracy, f1, R2 
scores

Model Performance Performance detail Show confusion matrix in a chart

Model Performance Performance by Class Show each target class and the relevant 
performance values

Feature Importance Feature Importance Show all ranked features’ importance in a bar 
chart

Hyperparameter 
Tuning

Hyperparameter Search 
Space

Show hyperparameter items and the search 
range, e.g., learning rate, hidden layer number, 
dropout rate, etc.

Hyperparameter 
Tuning

Hyperparameter Search 
Trials

Show how many trials (including pruned and 
completed trials) have been done for 
hyperparameter search

  Hyperparameter 
Tuning

Best Hyperparameters 
Selected

Show what hyperparameters have been selected

Table 1. BrewAI’s explainable features for data and model
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Model performance of BrewAI on Kaggle

BrewAI automatically splits the training, validation, and test datasets (derived from the 
uploaded training dataset) and provides a performance based on the test dataset. 
Once a model training had completed, we can see the accuracy and confusion matrix 
on BrewAI’s webpage (see Fig. 6 & Fig. 7). In this case study, the accuracy score is 80% 
based on BrewAI’s evaluation. 

We uploaded the test dataset (the original test dataset, not the one derived from the 
training dataset) to BrewAI and downloaded the predicted value as a csv file (see Fig. 9 
- stage 5). The predicted result was then submitted to Kaggle leaderboard of “Titanic - 
Machine Learning from Disaster” competition [91] for performance evaluation. The 
accuracy score on the Kaggle leaderboard for the test dataset was 0.76315 which is 
similar to the evaluation from BrewAI. Based on the Kaggle leaderboard data of this 
competition (extracted on 7th Oct 2021), the median value of the accuracy score 
among Kaggle competitors is 0.77511, around 88% of Kaggle competitor’s accuracy 
scores fell between 0.75 to 0.8. Therefore, BrewAI’s AutoML prediction ability is at the 
average level among 20779 Kaggle competitors in this case study. Participating in 
Kaggle competition usually requires extensive data science knowledge for data 
processing and model-building, the result of this case study shows that BrewAI is able 
to provide similar predictive power as an average Kaggle participant in an automated 
manner with less effort.

Model transparency and understandability of BrewAI

Drozdal et al.’s study [92] identify what information needs on the AutoML interfaces for 
data scientists to establish trust in AutoML systems. We evaluated the BrewAI’s model 
transparency and understandability based on a table in Drozdal et al’s study. The 
model transparency items of AutoML in the table were identified and ranked by 21 
participants with prior experience with machine learning. We evaluate each item to 
understand the model transparency of BrewAI. Table 2 shows how many 
model-transparency items BrewAI can provide from Drozdal et al.’s study. 

Importance 
Rank Type Aspect Description

Available In 
BrewAI

4 Data Raw data View the meanings of each column in the 
raw data

Yes

5 Data Raw data Visualise each column’s distribution in the 
raw data

Planned

6 Data Raw data Visualise the raw data - view overall 
distributions

Planned

8 Data Raw data View the raw data - statistics of individual 
distributions

Planned

9 Data Raw data Visualise outliers in the raw data Planned

10 Data Raw data View statistics of missing values in the raw 
data

Yes

11 Data Pre-processed data View statistics of the pre-processed data Planned

13 Data Pre-processed data Visualise data after pre-processing Planned

15 Data Raw data View statistics of outliers in raw data Planned

16 Data Feature engineering View how existing features were engineered 
into new features

Planned

19 Data Raw data View the raw data table Yes

Table 2: BrewAI’s model transparency item checklist (from Drozdal et al.’s study)
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19 Data Raw data View the raw data table Yes

21 Data Pre-processed data View the pre-processed data table Planned

24 Data Raw data See how data was split (test vs. 
train/holdout)

Yes

1 Model Model evaluation View evaluation metrics Yes

2 Model Model evaluation View visualisations of model performance Yes

12 Model Feature engineering Effect of engineered features Yes

14 Model Pipeline Show adopted models in output pipelines Yes

17 Model Pipeline Ability to edit a pipeline Yes

18 Model Model evaluation Compare differences between pipelines Yes

22 Model Model evaluation Compare one model against other models Yes

23 Model Feature engineering View new engineered features Planned

26 Model Hyperparameters See model’s hyperparameters Yes

3 Process Pre-processed data Know how raw data was pre-processed Planned

7 Process Pipeline View process of how a pipeline is created Yes

20 Process Pipeline Show which types of models considered for 
model selection

Planned

25 Process Feature engineering Know how features were engineered Planned

27 Process Hyperparameters Know how hyperparameter optimisation 
was performed

Yes

We found out that there are 14 out of 27 items of model transparency feature that 
BrewAI is available to show. The outstanding features are planned in BrewAI’s 
roadmap [84]. In practice, most business users do not understand the technical 
aspects related to data handling and model-building in the ML pipeline. This is why 
BrewAI focuses on a simple and clear interface that provides cosine information about 
the input data and model performance, which business users concern are most 
interested in.

Overall Evaluation

For the usability aspect, BrewAI does not require any data pre-processing and 
modeling skills to apply machine learning models. The interface consists of only 
simple controls which are easy enough for business users to use. The model building 
processing is fully automatic without worrying about parameter and pipeline settings. 
The only requirement for using BrewAI is that users need to understand the target 
they want the AutoML model to learn. Although BrewAI only works with 
tabular/structural data, users can still transform any other type of data into a tabular 
form for classification and regression tasks. 

For the model explainability and understandability aspect, BrewAI can show necessary 
details about the data and model in a way that business users can understand. Users 
can have a summary of their datasets without any programming skills or manual data 
analysis. There is limited explainability and control about the data pipeline and model 
generation process, but the assumption is that most business users only focus on the 
data and results such as data quality, performance, and feature importance that 
BrewAI can provide.

For the model performance aspect, the case study shows that non-expert users with 
the BrewAI model still achieve an average result in a Kaggle competition without data 
pre-processing and model building techniques.
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4. Conclusions and Future Work

Summary

This paper has reviewed the landscape of automating the application of machine 
learning methods and in particular existing work that is concerned with the 
development of a new type of tool called AutoML tools.  As there is a huge variety in 
the number of proposed solutions, this paper has focused on those specifically 
targeted at business applications and which do not have a high entry barrier.  A case 
study is performed using an existing solution (BrewAI) to determine its AutoML 
capabilities and positioning within the current offerings.  Using some practical 
datasets, the evaluation shows that the tool has the ability to analyse data sets in an 
intuitive manner while it offers a flexible and scalable architecture without a loss in 
performance.  Table 3 summarises the comparison with other tools.  

Tool Name License/Dep 
Costs

Models Used Expertise 
needed

Deployme
nt

Completeness 
of pipeline

Integration

DataRobot Annual License 
and Per Model 
Deployment

Wide range ML Scientist Premises/ 
Cloud

Complete APIs

H2O Annual License 
and Per Model 
Deployment

Wide range ML Science Premises 
/Cloud

Complete APIs

Google 
AutoML

Per timed 
usage

Regression and 
Classification

ML Scientist 
and DevOps

Google 
Cloud

Partial GCP services

AWS Sage Per timed 
usage

Regression and 
Classification

ML Scientist 
and DevOps

AWS Partial AWS services

Azure Per timed 
usage

Regression and 
Classification

ML Scientist 
and DevOps

Azure Partial Azure services

BrewAI Annual License 
and Per Model 
Deployment

Deep Learning Business 
Analyst, ML 
Scientist and 
DevOps

Premises/ 
Cloud

Complete Workflow engine 
(Plugins for various 
systems: SQL, 
Apache Spark, 
cloud storage, etc.) 

Table 3: Comparing BrewAI with other AutoML tools
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Future Research areas

There is no doubt that AutoML research work is likely to intensify especially when 
there are still many unresolved issues amongst them those listed in a recent survey [2]:

● Flexible search space. Although these search spaces have been proven effective 
for generating well-performing neural architectures, all of them are based on 
human knowledge and experience, which inevitably introduce human bias.

● Exploring more application areas: as AutoML techniques have had success in 
new areas such as network compression, federate learning, image caption, 
recommendation system, and searching for loss and activation functions, they 
have the potential to be applied in a wider range of areas.

● Interpretability: providing users with meaningful results is still and challenge 
and increasing the mathematical interpretability of AutoML is an important 
future research direction.

● Reproducibility: providing ML without incurring considerable resource 
consumption is also an important area of research.

● Robustness: most training datasets are well-labelled. However, in real-world 
situations, the data inevitably contain noise (e.g., mislabelling and inadequate 
information). Even worse, the data might be modified to be adversarial with 
carefully designed noises. Deep learning models can be easily fooled by 
adversarial data,

● Joint HPO and AO: there is a tremendous overlap between the methods used in 
HPO and AO. Future work can look at jointly optimising both hyperparameters 
and architectures.

● Complete AutoML pipeline: achieving a complete AutoML pipeline is still 
problematic.

● Lifelong learning: the system should be able to reuse prior knowledge to solve 
new tasks. We already mentioned meta-learning but unsupervised learning is 
still an active research area. Some work also looks at how to train a model using 
only new data while preserving its original capabilities

Regarding the last point, AutoML tools work on the assumption that we have labelled 
data, but in some cases, only a portion of the data may have labels or even none at all. 
Liu et al. [93] proposed a general problem setup, namely unsupervised 
neural-architecture search (UnNAS), to explore whether labels are necessary for 
architecture search. They experimentally demonstrated that the architectures 
searched without labels are competitive compared with those searched with labels.

On the business side of AutoML, the main issues are achieving the right balance 
between several often-conflicting forces [93]. One of them is how to express the 
problem not in terms of an ML task but as a set of business objectives with associated 
measures such as competitiveness, successfulness, and financial benefits [94]. Another 
is how to achieve transparency (explanations), usability (UI Design, UI aids) and 
performance (information quality) at the same time. Finally, establishing trust in 
AutoML is an important issue trust [92]. These issues are all interlinked e.g. adding 
business objectives may reduce the usability and decrease performance, adding more 
transparency may obscure and decrease trust, adding more usability may decrease 
performance etc. In some cases, compliance with regulations such as those associated 
with automated financial trading [95] is another important consideration. 
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In particular, [92] stresses the importance to provide the ability to “personalise” 
AutoML in different contexts. Differences in background knowledge, skills, work 
practices, and experience levels make it difficult to claim that AutoML tools ought to 
be designed as “one size fits all” [96] for every organisation. Some recent research by 
Arya et al. [97] allow for a degree of personalisation to accommodate individual 
preferences or different domains of use by defining explanation methods for different 
audiences and domains. We anticipate that, some form of AutoML with “human in the 
loop” is likely to be the prevalent approach when targeting business applications in 
the future.
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